
Eur. Phys. J. D 17, 205–212 (2001) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. Non-orthogonal tight-binding molecular-dynamics is employed to calculate structural and vi-
brational properties of C36 and its oligomers (C36)M=2,3,4. The lowest energy configuration of the C36 cage
is confirmed to have D6h symmetry. For the dimer, too, the D2h structure reported in the literature is
found. The vibrational spectrum is identified with the power spectrum of the displacement autocorrelation
function. Additional vibrational properties are extracted from the dynamical matrix. For the monomer, fair
agreement with available ab initio calculations is achieved, with comparatively smaller deviations in the
Raman-frequencies than for published semi-empirical calculations. The features of the vibrational modes
are correlated with the structural properties of the oligomers.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 71.20.Tx Fullerenes and related
materials; intercalation compounds – 33.20.Ea Infrared spectra

1 Introduction

Various properties of C36 molecules have been investigated
experimentally over the last several years [1–4]. However,
the synthesis of solid form C36 was achieved only re-
cently [5]. Solid-state NMR measurements indicate that
the molecule has D6h symmetry and the electron diffrac-
tion patterns suggest the crystal has hexagonal symme-
try. The IR absorption spectrum of the powdered crys-
tal shows a number of broad features between 400 and
1 800 cm−1 and, to our knowledge, no other measurements
of vibrational frequencies of C36 have been reported.

The electronic and structural properties of several
isomers of molecular C36 were recently investigated by
Grossman et al. [6] and Côté et al. [7]. Full structural
relaxations and electronic density of states were evalu-
ated using an ab initio pseudopotential density functional
(DFT) approach. Two carbon cages with 8 hexagons and
12 pentagons, one with D6h symmetry (in agreement with
the experimental findings), and the other with D2d sym-
metry, were found to be the most stable, with bond lengths
of the order of those in C60 and C70.

The most elaborate calculations of the vibrational fre-
quencies of C36 reported up to now are the first-principles
calculations of Jishi et al. [8], using a spin-polarized DFT
approach within the local density approximation (LDA).
For the IR spectrum, the overall agreement of the calcu-
lated frequencies with the experimental data is very good.
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Calculated frequencies for the Raman-active modes are
reported as well.

Using a semi-empirical covalent potential which was
shown to work well for C60 and C70, Halac et al. [9]
explored possible geometrical structures and calculated
the IR and the Raman spectrum of C36. In agreement
with the ab initio calculations, the D6h and D2d struc-
tures were found again to be the most stable. Fowler
et al. [10] reported structures and energies, calculated
at the density-functional tight-binding (DFTB) level, for
C36-based fullerenes, oligomers, and solids. It is found that
C36 forms stronger inter-cage bonds than larger fullerenes.

Our interest in C36 is driven by the persistent in-
complete experimental evidence (mainly concerning the
Raman spectrum), as well as by the speculations of
Fowler et al. about the potential role of C36 as build-
ing block in fullerene compounds and solids. Since local
density approximation (LDA) calculations for fullerene
oligomers (involving full geometry optimization and sub-
sequent structural and vibrational analysis) are indeed out
of reach of many powerful computers, there is a clear need
for alternative approaches, implying less computational ef-
fort and preserving, at the same time, the level of accuracy
of LDA methods. Tight-binding (TB) schemes, extensively
applied in the last two decades to investigate covalent sys-
tems, have proved to be valuable candidates. They can be
viewed as simplified two-center-oriented ab initio meth-
ods, since the electronic properties of the system are cal-
culated quantum mechanically.
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The TB parametrization employed in the present
study is the elaborate and yet conveniently implementable
scheme proposed by Papaconstantopoulos et al. [11–13],
which we recently have shown to very accurately de-
scribe the structure and experimental Raman spectrum
of C60 [14]. As clearly follows from the obtained results,
this high quality parametrization makes our TBMD ap-
proach comparable to ab initio methods in accuracy and
definitely more economical, thus making large scale calcu-
lations possible at reasonable computational costs.

Section 2 contains a brief outline of the non-orthogonal
TBMD formalism employed and of the TB parametriza-
tion considered. In Section 3 the obtained geometrical
structures and considerations on the involved energetics
are presented. Section 4 is devoted to the description of
the methodology used and of the vibrational properties
calculated.

2 Non-orthogonal tight-binding MD

In tight-binding total-energy (TBTE) models based on the
Kohn-Sham ansatz to density-functional theory [15], the
total energy of the system can be expressed as the sum of
the “band structure energy” (sum of occupied one-electron
energies) and a short-range repulsive pair potential (ac-
counting for the corrections to the single-particle picture):

Etot({RJ}) =
nocc∑
k=1

nkεk({RJ}) +
∑
J <K

Vrep(|RJ −RK |).

(1)
The one-electron energies εk are eigenvalues of the char-
acteristic equation:

(H− εkS)Ck = 0, (2)

where the Hamiltonian matrix, H, and the overlap matrix,
S, are expressed relative to some non-orthogonal set of
atom-centered orbitals. Ck is the eigenvector correspond-
ing to eigenvalue εk.

Most TBTE models use a parametrized pair poten-
tial to represent the repulsive contribution to the total
energy. However, the Kohn-Sham formulation allows the
eigenvalues to be shifted by an arbitrary constant. The TB
parametrization of Papaconstantopoulos et al. [13], used
throughout in this work, eliminates the pair potential by
choosing the arbitrary zero for each band structure such
that the total energy is given solely by the sum of the
(shifted) one-electron energies.

The forces acting on the atoms are related to the gra-
dients of the total energy at the atom sites and, according
to equations (1) (without repulsive term) and (2), they
are formally:

FI = −∂Etot

∂RI
= −

nocc∑
k=1

nk

Ck†SCk
Ck†

(
∂H
∂RI

− εk
∂S
∂RI

)
Ck.

Within the parametrization considered they can be ex-
pressed analytically, this being an essential advantage with
a view to tractable large-scale MD simulations.

Within a conventional orthogonal TB formalism, the
bond orbitals for the tetrahedral structure are constructed
from sp3 hybrids. The use of sp3 bonding for fullerenes is
justified by the fact that the nominal sp2 bonding between
adjacent carbon atoms actually occurs on a curved sur-
face, which leads to some admixture of sp3 bonding. The
total number of electrons considered for a molecule com-
posed of N atoms is n = 4N . The corresponding number
of occupied one-electron states is nocc = n/2, while the
occupation number is nk = 2. The (4N) × (4N) Hamil-
tonian matrix for the system of the valence electrons is
consequently composed of 4 × 4 blocks corresponding to
the coupling between the s, px, py and pz orbitals of the
involved atoms:

H =



. . .
...

...
...

...
· · · hIs 0 0 0 · · · HIJ

ss HIJ
sx HIJ

sy HIJ
sz · · ·

0 hIp 0 0 −HIJ
sx HIJ

xx H
IJ
xy H

IJ
xz

0 0 hIp 0 −HIJ
sy HIJ

xy H
IJ
yy H

IJ
yz

· · · 0 0 0 hIp · · · −HIJ
sz HIJ

xz H
IJ
yz H

IJ
zz · · ·

...
...

. . .
...

...


.

The diagonal on-site elements hIl (l = s or p) can be as-
signed the simplified interpretation of atomic energies, but
should generally be allowed to vary according to the local
environment of each atom. For the Hamiltonian matrix el-
ements of the non-diagonal block (I, J) the Slater-Koster
form is usually considered [16]. In terms of bond direction
cosines (γIJx , γIJx and γIJx ) and two-center hopping param-
eters (Hssσ , Hspσ , Hppσ, Hppπ), the relevant elements are
expressed as:HIJ

ss = HIJ
ssσ ,

HIJ
sx = γIJx HIJ

spσ ,
HIJ
xy = γIJx γIJy

(
HIJ
ppσ −HIJ

ppπ

)
+Hppσδxy,

(3)

the remaining ones resulting from a straightforward per-
mutations of indices x, y and z. Here δαβ is the Kronecker
symbol.

In a non-orthogonal TB formulation, except for the
unitary diagonal, the block-structure of the overlap matrix
S is similar to the one of the Hamiltonian.

The TB parametrization of Papaconstantopoulos
et al. [13] describes the environment of each atom by a
pseudo-atomic density:

ρI =
N∑
J 6=I

exp
(
−λ2RIJ

)
f(RIJ).

This depends exponentially on the distances to all neigh-
bors and also through the cutoff function:

f(R) =
1

1 + exp[(R−Rc)/∆]
·

The latter practically vanishes when R > Rc, the main
decrease taking place roughly within a domain of size ∆.
For carbon the values Rc = 10.5 a0 and ∆ = 0.5 a0 are
employed (a0 is the Bohr radius).
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Table 1. Comparison of calculated bond lengths (in Å) for the D6h-symmetry isomer of C36.

Bond Grossmana Jishib Halacc this work

d1 (top and bottom hexagons) 1.41 1.43 1.46 1.434

d2 (between adjacent pentagons) 1.48 1.42 1.49 1.440, 1.502

d3 (between pentagons and median hexagons) 1.43 1.47 1.47 1.438, 1.427

d4 (across the median hexagon belt) 1.43 1.40 1.43 1.428

a Reference [6] (pseudopotential DFT approach).
b Reference [8] (spin-polarized DFT LDA calculation).
c Reference [9] (semi-empirical calculation).

The (diagonal) on-site Hamiltonian elements are given
in terms of the local pseudo-atomic density by a Birch-like
equation:

hIl = αl + βlρ
2/3
I + γlρ

4/3
I + χlρ

2
I ,

where, obviously, only l = s, p are considered. As for the
two-center Slater-Koster hopping terms, they have been
parametrized as polynomials times an exponential cutoff
in order to exhibit the proper behavior for small inter-
atomic distances (µ = σ, π):

Hll′µ(R) = (all′µ + bll′µR+ cll′µR
2) exp

(
−d2

ll′µR
)
f(R)

Sll′µ(R) = (δll′ + pll′µR+ qll′µR
2 + rll′µR

3)

× exp
(
−s2

ll′µR
)
f(R).

These then provide in virtue of relations (3) the non-
diagonal Hamiltonian and overlap matrix elements for the
overall system.

3 Structure and energetics

The equilibrium geometry of the C36 carbon cage was ob-
tained by simulated annealing. The initial configuration
was prepared by a random distortion of the regular D6h

configuration employed by Jishi et al. [8], which features
8 hexagonal and 12 pentagonal faces and is characteri-
zable by four bond lengths. The distorted structure was
allowed to relax for 1 ps with a time step of 2×10−4 ps, by
reducing the velocities by 1% after each time step. The ob-
tained relaxed structure is depicted in Figures 1a and 1b,
top and side view, respectively.

As can be easily noticed, even though the carbon cage
preserves the D6h symmetry reported in the literature, it
is no longer composed of regular pentagons and hexagons,
but rather slightly distorted. Basically, the atoms of the
top and bottom hexagons no longer lie in the same plane,
but occupy slightly displaced, alternating positions above
and beneath the respective plane. Thus the neighboring
distorted pentagons are grouped in three symmetric pairs,
forming the lower and the upper belt. The structure can
be characterized by six (no longer four) bond lengths (see
Tab. 1), even though these are changed quite little as com-
pared to those of Jishi et al. (by less than 0.08 Å). On
the whole, the distance between the corresponding atoms
of the top and bottom hexagons is increased to 5.18 Å,

Fig. 1. Calculated structure of the D6h-symmetry isomer of
C36: (a) top view, (b) side view. The relevant bond lengths are
indicated in Å.

making our structure slightly more elongated (by approx-
imately 0.3 Å). As a matter of fact, a small geometric
distortion (≤ 0.01 Å in D6h-equivalent bonds) of the C36

cage has been also predicted by Fowler et al. [10].
It is interesting that our bond lengths seem to agree

somewhat better with those resulted from the pseudopo-
tential DFT calculations of Grossman et al. [6]. The max-
imum difference in this case amounts to 0.04 Å and cor-
responds to the three shorter bonds across the pentagon
belts.

Though of the same order, as can be seen from Ta-
ble 1, the bond lengths yielded by the semi-empirical cal-
culations of Halac et al. depart more than ours from the
ab initio results of references [6,8].

The equilibrium geometries of the oligomers were
determined by simulated annealing, as well. For each
oligomer several full geometry optimizations were per-
formed, each starting from relative monomer positions fa-
vored by the symmetry of the relaxed C36 cage. The lowest
energy configurations found for the oligomers are depicted
in Figure 2 and they show well-defined symmetry: D2h for
the dimer, D3h for the trimer, and D4h for the tetramer.
While the dimer and trimer form double bonds between
the monomers (by face-to-face polar-polar connection of
hexagons from the median belt of each involved cage),
the tetramer binds the monomers by four-fold bonds (two
pairs of equal bonds). Moreover, in the tetramer the C36

cages appear most deformed due to the less adapted sym-
metry of the environment.

Further relevant structural and energetic data are
gathered in Table 2. As can be seen, due to the different
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Fig. 2. The energetically most stable oligomers (C36)M=2,3,4.

Table 2. Calculated inter-cage bond length, l, center-to-center
inter-cage distance, d (both in Å), binding energy per atom,
EB, and band gap, ∆ (both in eV).

symmetry l d EB ∆
C36 - - 9.74 0.37
(C36)2 D2h 1.60 6.69 9.77 1.26
(C36)3 Dh 1.65 6.63 9.77 1.00

(C36)4 D4h
1.51
1.66

6.50 9.76 0.99

deformations of the contained monomers, the inter-cage
bond length, l, is increased roughly by 0.05 Å in the trimer
and tetramer as compared to the dimer. Nevertheless, the
shorter (outer) inter-cage bonds of the tetramer measure
only 1.51 Å. Quite on the contrary, the dimer shows the
largest center-to-center inter-cage distance, d = 6.69 Å,
the trimer and tetramer being thus slightly more compact
on the whole.

It should be noted that for the dimer the geometrical
data are in excellent agreement with those obtained by
Fowler et al. from DFTB calculations (l = 1.60 Å and
d = 6.74 Å).

The calculated binding energies per atom, EB, are
probably somewhat overestimated, since the used TB
parametrization of Papaconstantopoulos et al. [13] is
based on fits to LDA results for solids, and LDA is noto-
rious for overbinding solids. Both in the dimer and trimer

(a)

(b)

(c)

(d)

Fig. 3. Pseudo-atomic densities for the C36 fullerene and its
oligomers (C36)M=2,3,4.

(with 9.77 eV/atom) the atoms appear to be stabilized by
an excess of 0.03 eV as compared to the monomer. Even
though geometrically more compact, the tetramer (with
9.76 eV/atom) turns out to be slightly weaker bound. This
can also be related to the more pronounced symmetry loss
of the C36 cages within the tetramer.

The C36 molecule has a quite modest HOMO-LUMO
gap, ∆ = 0.37 eV. All three considered oligomers have
significantly higher HOMO-LUMO gaps, and this finding
agrees again with the calculations of Fowler et al. [10].

In Figure 3 we have displayed by grey-levels the
pseudo-atomic density for the C36 molecule and its con-
sidered oligomers. A darker shade corresponds to a higher
value of the pseudo-density, thus implying a higher popu-
lation. In the case of the monomer (Fig. 3a, top and side
view), the highest-density sites are located (1) at the com-
mon vertices of the hexagons composing the median belt
and (2) at the vertices of the top and bottom hexagons (al-
ternating with low-density sites). Both for the dimer and
trimer, the bonding atoms are low-density sites, higher
densities occurring around the inter-cage bonds. This be-
havior is similar to the one reported by Esfarjani et al. [17]
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for the charge distribution in the dumbbell isomer of the
C60 dimer.

In the case of the tetramer, the inner (longer) inter-
cage bonds are formed between low-density sites, while
the outer (shorter) inter-cage bonds involve high-density
sites. Roughly speaking, the high-density sites are prefer-
entially located in the exterior “saddles” formed between
the component monomers.

4 Vibrational properties

In order to characterize the overall vibration of the car-
bon cage, we employed the displacement autocorrelation
function:

Cδr(t) =
∑N
I=1〈δrI(t) · δrI(0)〉∑N

I=1(δrI(0))2
,

with δrI(t) representing the displacement of atom I at
time t. The Fourier-transform (power spectrum) of Cδr(t)
can be straightforwardly identified with the vibrational
spectrum of the molecule. We did not use the more pop-
ular velocity autocorrelation function, since the initial
preparation of the vibrational state and, consequently, also
its subsequent monitoring can be more conveniently ac-
complished in terms of atomic displacements. Aside from
this aspect, the information contained in the two autocor-
relation functions is absolutely equivalent.

The vibration of molecules with an inversion point
(such as C36) can be additionally characterized by the
parity, which we define as:

P =
∑N
I=1〈δrI · (−δrsym(I))〉∑N

I=1 (δrI)
2

,

where sym(I) designates the symmetric atom for atom I
with respect to the inversion point.

An alternative way to analyze the vibrational prop-
erties within the harmonic approximation, providing also
complementary information to those extracted from the
power spectrum of autocorrelation functions, is based on
the dynamical matrix [18].

For this approach to be applicable, one has to start
from a fully relaxed geometrical structure of the molecular
aggregate under consideration, with each atom occupying
an equilibrium position. The elements of the dynamical
matrix have the significance of local curvatures of the po-
tential energy surface at the atom sites, and they can be
approximated in the second order by the finite difference
formula:

HαβIJ = −F
α
I (rβJ + h)− FαI (rβJ − h)

2h
+O(h2),

I, J = 1, 2, . . . , N, α, β = x, y, z,

with FαI (rβJ±h) representing the α-component of the force
acting on atom I when atom J is displaced by ±h along
direction β.

In order to obtain the vibrational frequencies and
the corresponding atomic displacements for the normal
modes, one has to solve then the generalized eigenvalue
problem for the dynamical matrix:

H · δrk = ω2
kM · δrk, k = 1, 2, . . . , 3N.

Here ωk is the eigenvalue (frequency) of normal mode k,
δrk is the corresponding eigenvector (having as compo-
nents the atomic displacements), and M is the diagonal
matrix with the atomic masses on the main diagonal.

We will start by describing the results obtained for
the C36 monomer. The 102 vibrational modes of the D6h-
symmetry isomer of C36 can be grouped as follows:

Γvib =


6A1g + 8E1g + 9E2g Raman-active
2A2g + 5B1g + 4B2g silent
5A2u + 8E1u IR-active
3A1u + 4B1u + 5B2u + 9E2u silent.

Since, the Raman-active modes have gerade symmetry,
while the IR-active ones are ungerade, monitoring the par-
ity of the vibration during an MD simulation allows for
the nature of the resulted power spectrum to be identified.

Each MD run was started from the relaxed D6h struc-
ture obtained as described above. The equilibrium config-
uration was initially prepared (excited) by displacements
of the atoms according to patterns which will be explicitly
detailed in what follows. All runs spanned a time interval
of 2 ps and, to ensure the stability and accuracy of the
propagation process, a time step of 2× 10−4 ps was used.

For a random initial excitation of the carbon cage, the
normalized parity of the vibration was found to be pre-
dominantly positive, typically exceeding 0.9 on the av-
erage, which implies that the composite vibration of the
molecule had overwhelmingly gerade symmetry. This be-
havior is actually a direct result of the uniform character
of the applied random excitation.

To restrict the calculation exciting only Raman-active
modes, the initial displacements of the atoms, though ran-
dom, must additionally have gerade symmetry. This can
be simply achieved by picking up atoms randomly and as-
signing them random displacements, while assigning in-
verted displacements to the symmetric ones. Provided
the propagation errors are kept under control, for such
“random gerade” initial excitations the unitary parity of
the vibration is conserved throughout the run. This has
the important consequence that the power spectrum of
the autocorrelation function can be directly related to the
Raman-spectrum.

Since by its specific nature this approach does not deal
with individual vibrational modes separately, in order to
assign the obtained peaks, besides the random gerade ex-
citation, also restricted excitation patterns can be applied,
analogous to the reported treatment of C60 [14]. The sim-
plest among these patterns, yielding the six Ag(1) peaks,
implies the radially symmetrical in-phase displacement of
all atoms.

Figure 4 shows the simulated Raman spectrum, ob-
tained by averaging over as many as 20 independent runs,
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Fig. 4. Calculated power spectrum of C36 and Raman frequen-
cies of reference [8].

Table 3. Calculated Raman frequencies of C36 (in cm−1) and
relative differences ∆ν/ν∗ (in %) with respect to those of Jishi
et al.

Mode Jishia Halacb this work
ν∗ ν ∆ν/ν∗ ν ∆ν/ν∗

A1g(1) 375 332 −11.5 373 −0.5
A1g(2) 628 498 −20.7 635 1.1
A1g(3) 750 714 −4.8 740 −1.3
A1g(4) 923 766 −17.0 909 −1.5
A1g(5) 1 225 1 160 −5.3 1 249 2.0
A1g(6) 1 545 1 485 −3.9 1 539 −0.4
E1g(1) 345 325 −5.8 358 3.8
E1g(2) 556 516 −7.2 461 −17.1
E1g(3) 721 701 −2.8 652 −9.6
E1g(4) 759 814 7.2 730 −3.8
E1g(5) 965 873 −9.5 919 −4.8
E1g(6) 1 250 1 097 −12.2 1 198 −4.2
E1g(7) 1 326 1 307 −1.4 1 333 0.5
E1g(8) 1 455 1 454 −0.1 1 461 0.4
E2g(1) 299 298 −0.3 295 −1.3
E2g(2) 565 551 −2.5 489 −13.5
E2g(3) 613 640 4.4 530 −13.5
E2g(4) 667 735 10.2 604 −9.4
E2g(5) 967 794 −17.9 969 0.2
E2gg(6) 1 133 1 034 −8.7 1 107 −2.3
E2g(7) 1 286 1 210 −5.9 1 296 0.8
E2g(8) 1 442 1 375 −4.6 1 429 −0.9
E2g(9) 1 528 1 433 −6.2 1 502 −1.7

a Reference [8]. b Reference [9].

each started with a random gerade initial excitation. No
scaling was applied to the resulted frequencies. At the
bottom of the panel, the theoretical spectrum of Jishi
et al. [8], obtained by first-principles calculations, was also
depicted by equal-size vertical lines (since no intensity in-
formation is available).

The frequencies resulted from the diagonalization of
the dynamical matrix agree very well with those yielded
by the Fourier analysis of the displacement autocorrela-
tion function. The frequencies of the Raman-active modes
have been included in Table 3, along with those of Jishi
et al. (taken as reference) and those of Halac et al.
(semi-empirical calculation). For a more eloquent com-
parison, the relative differences with respect to the fre-
quencies of Jishi et al. have been listed, as well. Except

635 cm-1 A1g(2)

Raman - active
cage breathing

752 cm-1 A2u(2)

IR - active

Fig. 5. Atomic displacement patterns for the Raman-active
A1g(2) and the IR-active A2u(2) modes of C36.

for the E1g and E2g modes situated in the frequency in-
terval 461–652 cm−1, the relative deviations for all other
Raman frequencies obtained in this work do not exceed
5%. The larger discrepancies for the mentioned vibrations
are caused by the fact that they involve large-amplitude
oscillations of the atoms defining the bonds between the
hexagons from the median belt (found slightly elongated
as compared to Jishi et al.). The deviations correspond-
ing to the results of Halac et al. are seen to be typically
higher, amounting to over 20% for the “cage breathing”
A1g(2) mode.

The superior quality of our results over those of Ha-
lac et al., both regarding the geometrical structure and
the Raman spectrum, is obviously a direct consequence
of the more elaborate TB model on which our calcula-
tions are based, but also of the very realistic parametriza-
tion of Papaconstantopoulos et al. [13] used as part of our
approach.

The (scaled) atomic displacements obtained by us
for the Raman-active “cage breathing” A1g(2) mode (at
635 cm−1) are displayed in Figure 5, together with those
for the IR-active A2u(2) torsion mode (at 752 cm−1).

The IR frequencies yielded by the dynamical matrix
are presented in Table 4. Except for the A2u(4), E1u(1)
and E1u(5) modes, the relative deviations for all other
IR frequencies obtained in this work do not exceed 3.5%.
The discrepancies for the mentioned vibrations originate
in this case mainly in the large contribution of the os-
cillations of the atoms defining the long (most distorted)
inter-pentagon bonds.

The total number of normal modes we found for
the oligomers is 206 for (C36)2 and (C36)3, and 311 for
(C36)4. The corresponding Raman spectra, calculated by
the Fourier-transform of the displacement autocorrelation
function, are shown in Figure 6. For each oligomer the
“inter-cage stretch” and the “cage breathing” modes are
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Fig. 6. Calculated Raman spectrum for the most stable
oligomers (C36)M=2,3,4.

Table 4. Calculated IR frequencies of C36 (in cm−1).

Mode Jishia this work
ν∗ ν ∆ν/ν∗

A2u(1) 510 511 0.2
A2u(2) 758 752 −0.8
A2u(3) 785 796 1.4
A2u(4) 1 103 1 022 −7.3
A2u(5) 1 340 1 385 3.4
E1u(1) 459 431 −6.1
E1u(2) 483 480 −0.6
E1u(3) 668 682 2.1
E1u(4) 727 734 1.0
E1u(5) 1 083 1 027 −5.2
E1u(6) 1 261 1 259 −0.2
E1u(8) 1 355 1 375 1.5
E1u(9) 1 465 1 454 −0.8

a Reference [8].

emphasized. The frequencies and the atomic displacement
patterns for these vibrational modes obtained from the
dynamical matrix are displayed in Figure 7.

Whereas the patterns for the inter-cage stretch are
somehow predictable, in the case of the “cage breath-
ing” the atom oscillations have become rather non-
symmetric about the individual cages, departing most for
the tetramer from the corresponding monomer pattern.
Furthermore, quite opposed to the tetramer, in the dimer
and the trimer the atoms forming the inter-cage bonds
seem to be practically not involved in the mode, show-
ing very little displacements. In fact, while the dimer and
the trimer frequencies remain quite little shifted from the
monomer frequency (635 cm−1), the tetramer frequency
for this mode is red shifted by as much as 70 cm−1. This
is clearly again a consequence of the larger distorsion of
the C36 cages within the tetramer.

646 cm-1

141 cm-1 631 cm-1

171 cm-1

565 cm-1151 cm-1

inter-cage stretch cage breathing

Fig. 7. Atomic displacement patterns for the inter-cage stretch
and cage breathing modes of the oligomers (C36)M=2,3,4.

Along with the experimental spectrum of Piskoti
et al. [5] obtained for a C36 crystalline sample, Figure 8
shows the frequencies calculated in this work for the IR-
active modes of C36 and its oligomers. Even though our
calculations deal with isolated molecular species, in the
region between 400 and 900 cm−1 the frequencies tend to
cluster in four bands, similar to the experimental spec-
trum. While the monomer can account for the bands
around 500, 700, and 800 cm−1, for the band around
600 cm−1 seem to be responsible only the oligomers. Fur-
thermore, our calculations suggest major contributions
to the band around 1 100 cm−1 from the dimer and the
tetramer, the monomer being practically not involved.

5 Conclusions

A non-orthogonal TBMD approach is employed to sim-
ulate structural and vibrational properties of the C36

fullerene molecule and its oligomers (C36)M=2,3,4. The
parametrization used for the Hamiltonian and overlap
matrices is the one of Papaconstantopoulos et al. [13]
and it involves a pseudo-atomic density and environment-
dependent on-site and hopping parameters.

The equilibrium structures for all molecular aggregates
considered are determined by simulated annealing. The
lowest energy isomer of C36 is confirmed to have D6h sym-
metry and the obtained bond lengths agree to within 2.7%
(0.04 Å) with the ones resulting from first-principles cal-
culations. All treated oligomers show a well-defined sym-
metry. For the dimer, the D2h structure reported in the
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Fig. 8. Experimental IR spectrum for a C36 crystalline sam-
ple (Ref. [5]) and calculated IR frequencies for C36 and its
oligomers (C36)M=2,3,4.

literature is found. Whereas in the dimer and the trimer
the individual cages are linked by double bonds, within
the tetramer four-fold bonds are formed and the cages are
most distorted due to the less adapted symmetry of the en-
vironment. The binding energy per atom for the tetramer
appears decreased accordingly, rendering it slightly less
stable than its predecessors and a less probable building
block for larger structures.

To characterize the overall vibration of the molecular
structures, the autocorrelation function of the atomic dis-
placements is employed. By initiating the MD runs with
random gerade excitations, the gerade symmetry of the
vibration is conserved and the power spectrum of the au-
tocorrelation function is related to the Raman-spectrum.
Supplementary information about the vibrational modes
is gained by diagonalizing the dynamical matrix. For the
monomer fair agreement with reported ab initio results is
achieved, the relative differences between the vibrational
frequencies (not scaled in any way) and the ab initio data
typically amounting to less than 5%. The atomic displace-
ment patterns for selected normal modes are correlated
with the geometric structures and the pseudo-density dis-
tribution.

Even though our structural and vibrational results
are expected to be slightly less accurate than those from
ab initio calculations, they are, however, obtained at much
lower computational costs and turn out to be superior in
most respects to semi-empirical calculations.
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